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Project details

• Project title: Data-driven optimisation framework for assessing energy and emission saving potentials in

foundation industries

• Industry Project Partner: Palm Paper Limited

• Project duration: 6 months

• Aim: Quantifying the potentials for energy and emission savings optimising energy performance

• Objectives:

 O1: Data analysis and processing

 O2: Identification of benchmark representative production activities

 O3: Development of a data-driven modelling framework

 O4: Formulation of the optimisation problem



Net-Zero and industrial energy

• Industry energy consumption represents almost 40% of current global total final consumption and is

still dominated by fossil fuels

• The IEA predicts that efficiency increases will prevent 1Gt of carbon emissions by 2030 alone

• Foundation industries provide a large potential to improve both energy use and production efficiency

• Concerns over climate change are likely to make inefficiency and high emissions increasingly serious

business liabilities

Optimised and energy-efficient production can give energy savings from 10% to 50% 

− International energy Agency (IEA), World Energy Outlook 2021

− J. Rissman, et al., Technologies and policies to decarbonize global industry: Review and assessment ofmitigation drivers through 2070, Applied Energy, 2020

− W. Cai et al., A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking, Renewable and Sustainable Energy Reviews, 

2022



Energy management in future industry

• Combining energy management with all-important production targets requires new research into

systematic, decision-making frameworks

• This becomes more important as

 factories install renewable generation

 rewards for grid support are available
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Challenges and contributions

• Unavailable, inaccurate model, high-order highly nonlinear dynamics

• Handling energy resources along with standard operational constraints and objectives

• Multiple non-production objectives:

 Costs and emissions minimization

 Energy efficiency improvement

 Effective service provision

• Advanced optimisation framework as decision-support system

• Data-driven modelling



Model Predictive Control (MPC)

MPC uses a dynamical model of the process/system to predict its future  

evolution and choose the “best” control action 

© 2018 A. Bemporad, Model Predictive Control



Why Model Predictive Control

• Systematic use of data, forecasts and measurements

• Based on the future behavior of the system

• Handling of constraints

• Use of a feedback mechanism

• Economic, social and environmental

objectives

• Mature code and development tools

• Flexible and advanced control design MPC design flow



Part I: Data-driven modelling



• Paper production company producing newsprints and news paper grades from completely recycled materials

• Production relying on natural gas and electricity

Paper industry

The Paper Machine (PM) consumes between

80% to 90% of total steam and 58%-70% of

electricity in the mill

Measurement points indicated by 

asterisks



Identification of sub-systems

Main components:

 Boiler
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Identification of sub-systems
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Datasets

• A yearlong data collected and sampled every minute

• Available data in their raw and unprocessed form

• Necessary to pre-process data, e.g., :

 Resampling

 Noise reduction

 Elimination of outliers

 Detrending to remove data offsets

Data of one week of operation

0 2000 4000 6000 8000 10000

Time (min)

6

8

10

12

14

16

18

20

22

24

26

P
o

w
e

r 
(M

W
)

CHP Steam Output



Boiler model

• Type of model: static (least square estimation)

• Input (𝑢𝐵) = gas supply from the boiler pressure reduction and metering station (BPRMS)

• Output (𝑦𝐵) = steam flow at 3 barg (9 barg pressure output negligible and unavailable)

Validation: Fit % = 93.6 % 
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• Model: 𝑦𝐵(𝑡) = 𝐸𝐵 𝑢𝐵(𝑡) + 𝑣𝐵(𝑡)

• ON Mode: 𝐸𝐵 = 75.47% 𝑣𝐵(𝑡) = 1.0698

• Standby Mode: 𝐸𝐵 = 3.01% 𝑣𝐵(𝑡) = 5.03

𝑦𝐵

𝑢𝐵



CHP model

• Type of model: static (least square estimation)

• Inputs (𝒖𝐶𝐻𝑃): gas supply to gas turbine and supplementary firing gas supply

• Outputs (𝒚𝐶𝐻𝑃): CHP steam, CHP Gas Turbine electrical power and CHP Steam Turbine electrical power

𝒖𝐶𝐻𝑃
𝒖𝐶𝐻𝑃

𝒚𝐶𝐻𝑃

𝒚𝐶𝐻𝑃

No data available



CHP model
• Model: 𝒚𝐶𝐻𝑃 = 𝑬𝐶𝐻𝑃 𝒖𝐶𝐻𝑃 + 𝒗𝐶𝐻𝑃

• 𝑬𝐶𝐻𝑃 =

−0.2009 0.4411
0.1076 0.2158
0.3894 −0.0064

, 𝒗𝐶𝐻𝑃 =

27.4471
−4.1602
−7.1348

• 𝒖𝐶𝐻𝑃 =
𝑢𝐶𝐻𝑃
1

𝑢𝐶𝐻𝑃
2 =

𝐺𝑇 𝑔𝑎𝑠 𝑠𝑢𝑝𝑝𝑙𝑦
𝑆𝐹 𝑔𝑎𝑠 𝑠𝑢𝑝𝑝𝑙𝑦

• 𝒚𝐶𝐻𝑃 =

𝑦𝐶𝐻𝑃
1

𝑦𝐶𝐻𝑃
2

𝑦𝐶𝐻𝑃
3

=

𝐶𝐻𝑃 𝑆𝑡𝑒𝑎𝑚
𝐶𝐻𝑃 𝑆𝑇 𝐸𝑙𝑒𝑐𝑡
𝐶𝐻𝑃 𝐺𝑇 𝐸𝑙𝑒𝑐𝑡

Validation: 

Steam Fit % = 56.87 % 
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Paper Machine model

• Type of model: dynamic state space (subspace identification)

• Inputs (𝒖𝑃𝑀): steam, electrical power and material flow

• Outputs (𝑦𝑃𝑀 ): paper machine production (t/h)

Validation: Fit % = 94.73%
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Paper Machine model

• Model: 𝒙𝑃𝑀(𝑡 + 1)= A 𝒙𝑃𝑀(𝑡) + B𝒖𝑃𝑀(𝑡) + 𝒘𝑃𝑀(𝑡)

𝑦𝑃𝑀(𝑡) = C 𝒙𝑃𝑀(𝑡) + 𝑣𝑃𝑀(𝑡)

• Model order: 4th order

• 𝑦𝑃𝑀(𝑡) = PM Production

• 𝒖𝑃𝑀(𝑡) =

𝑢𝑃𝑀
1 (𝑡)

𝑢𝑃𝑀
2 (𝑡)

𝑢𝑃𝑀
3 (𝑡)

=
𝑃𝑀 𝐸𝑙𝑒𝑐𝑡
𝑃𝑀 𝑆𝑡𝑒𝑎𝑚

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐹𝑙𝑜𝑤

• 𝑢𝑃𝑀
1 (𝑡)= 𝑦𝐶𝐻𝑃

2 (𝑡)+ 𝑦𝐶𝐻𝑃
3 (𝑡) + 𝑢𝑔𝑟𝑖𝑑 𝑡

• 𝑢𝑃𝑀
2 (𝑡)= 𝑎𝐶𝐻𝑃 𝑦𝐶𝐻𝑃

1 (𝑡)+ 𝑎𝐵 𝑦𝐵(𝑡)

• 𝑎𝐶𝐻𝑃 = 0.6346

• 𝑎𝐵 = 3.1259

• A =

0.694 −0.263
0.404 0.615

−0.250 −0.061
0.714 0.043

0.057 0.145
0.030 −0.207

0.130 0.720
−0.291 0.300

• B =

0.006 0.010 −0.009
0.004 −0.021 0.063
0.042 0.029 −0.064

−0.016 −0.008 −0.001

• C = 111.5 −12.76 −39.78 −49.63



Part II: MPC problem formulation



MPC formulation

Cost functions

Constraints

min
𝑢



𝑡=0

𝑁−1

𝑐𝑔𝑎𝑠 𝑡 𝑢𝐵 𝑡 + 𝑢𝐶𝐻𝑃
1 𝑡 + 𝑢𝐶𝐻𝑃

2 𝑡 + 𝑐𝑒𝑙𝑒𝑐𝑡 𝑡 𝑢𝑔𝑟𝑖𝑑 𝑡 + 𝛾 𝛼(𝑡) 2
2

Minimise energy costs
Tracking production 

objective [𝒚𝑷𝑴
𝑹 (𝒕) ]

s. to

𝑦𝐵(𝑡) = 𝐸𝐵 𝑢𝐵(𝑡) + 𝑣𝐵 𝑡

𝒚𝐶𝐻𝑃(𝑡) = 𝑬𝐶𝐻𝑃 𝒖𝐶𝐻𝑃(𝑡) + 𝒗𝐶𝐻𝑃 𝑡

𝒙𝑃𝑀(𝑡 + 1)= A 𝒙𝑃𝑀(𝑡) + B 𝑢𝑃𝑀(𝑡) + 𝒘𝑃𝑀(𝑡)

𝑦𝑃𝑀(𝑡) = C 𝒙𝑃𝑀(𝑡) + 𝑣𝑃𝑀(t)

𝒖𝐶𝐻𝑃 ≤ 𝒖𝐶𝐻𝑃(𝑡) ≤ ഥ𝒖𝐶𝐻𝑃, 𝒚𝐶𝐻𝑃 ≤ 𝒚𝐶𝐻𝑃(𝑡) ≤ ഥ𝒚𝐶𝐻𝑃

𝑢𝐵 ≤ 𝑢𝐵(𝑡) ≤ ത𝑢𝐵, 𝑦𝐵 ≤ 𝑦𝐵(𝑡) ≤ ത𝑦𝐵

−ത𝑢𝑔𝑟𝑖𝑑 ≤ 𝑢𝑔𝑟𝑖𝑑(𝑡) ≤ ത𝑢𝑔𝑟𝑖𝑑

−𝛼 𝑡 + 𝑦𝑃𝑀
𝑅 (𝑡) ≤ 𝑦𝑃𝑀(𝑡) ≤ 𝛼 𝑡 + 𝑦𝑃𝑀

𝑅 𝑡

Boiler model

CHP model

PM model

Tracking (𝛼 = slack variable)

Bounds/Capacity limits



Energy costs and tracking

3 hours prediction horizon - 5 minutes sampling interval

Substantial theoretical cost savings
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Conclusions

- Optimisation-based control approaches have the high potential to improve the energy 

efficiency and minimise costs and emissions

- MPC is likely to become a standard for energy & power applications

- MPC is a promising methodology for energy management and decision-making in industries

 cost-effective, environmentally friendly and energy efficient production plans

 robustness against several sources of uncertainty, including the communication delays

 non-standard objectives, such as grid service provision, can be included



Thank You! 

Alessandra Parisio

Power and Energy Division

Department of Electrical and Electronic 
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