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Project details

Project title: Data-driven optimisation framework for assessing energy and emission saving potentials in
foundation industries

Industry Project Partner: Palm Paper Limited

Project duration: 6 months

Aim: Quantifying the potentials for energy and emission savings optimising energy performance

Objectives:
» 01: Data analysis and processing
> 02: Identification of benchmark representative production activities
» 03: Development of a data-driven modelling framework
» 04: Formulation of the optimisation problem



Net-Zero and industrial energy
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* Industry energy consumption represents almost 40% of current global total final consumption and is
still dominated by fossil fuels

» The IEA predicts that efficiency increases will prevent 1Gt of carbon emissions by 2030 alone
* Foundation industries provide a large potential to improve both energy use and production efficiency

« Concerns over climate change are likely to make inefficiency and high emissions increasingly serious
business liabilities

Optimised and energy-efficient production can give energy savings from 10% to 50%

= International energy Agency (IEA), World Energy Outlook 2021

= J. Rissman, et al., Technologies and policies to decarbonize global industry: Review and assessment ofmitigation drivers through 2070, Applied Energy, 2020

— W.Caietal.,Areview on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking, Renewable and Sustainable Energy Reviews,
2022




Energy management in future industry
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* Combining energy management with all-important production targets requires new research into
systematic, decision-making frameworks

* This becomes more important as
v’ factories install renewable generation
v" rewards for grid support are available
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TE Challenges and contributions

* Unavailable, inaccurate model, high-order highly nonlinear dynamics
* Handling energy resources along with standard operational constraints and objectives

e Multiple non-production objectives:

v Costs and emissions minimization
v Energy efficiency improvement
v Effective service provision

U

« Advanced optimisation framework as decision-support system

» Data-driven modelling




IR Model Predictive Control (MPC)
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MPC uses a dynamical model of the process/system to predict its future
evolution and choose the “best” control action

© 2018 A. Bemporad, Model Predictive Control



UM ENAS Why Model Predictive Control

The University of Manchester

Systematic use of data, forecasts and measurements

Based on the future behavior of the system

High-fidelity simulation model

Handling of constraints

Use of a feedback mechanism

(simplified) control-oriented
prediction model
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Part |: Data-driven modelling




* Paper production company producing newsprints and news paper grades from completely recycled materials

* Production relying on natural gas and electricity
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Identification of sub-systems
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Identification of sub-systems

Main components:
v Boiler

v Combined heat and power
(CHP) plant
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Datasets

 Ayearlong data collected and sampled every minute
* Available data in their raw and unprocessed form
* Necessary to pre-process data, e.g., :

v Resampling

v" Noise reduction

v" Elimination of outliers

v’ Detrending to remove data offsets
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Boiler model

* Type of model: static (least square estimation)

* Input (ug) = gas supply from the boiler pressure reduction and metering station (BPRMS)

* Output (yg) = steam flow at 3 barg (9 barg pressure output negligible and unavailable)

{
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v

* Model:

y(t) = Eg ug(t) + vg(t)

- ONMode: Ep = 75.47% vy (t) = 1.0698

» Standby Mode:

Ep = 3.01% vy(t) = 5.03
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Wi CHP model

The University of Manchester

Type of model: static (least square estimation)

Inputs (u.yp): gas supply to gas turbine and supplementary firing gas supply

Outputs (ycyp): CHP steam, CHP Gas Turbine electrical power and CHP Steam Turbine electrical power
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VARHIGER CHP model
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* Model: ycyp = Ecyp Ucyp + Vegp
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* Inputs (up;,): steam, electrical power and material flow
PM

Paper Machine model

» Type of model: dynamic state space (subspace identification)

 OQutputs (ypy ): paper machine production (t/h)
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i Paper Machine model
b MOdEI: xpM(t‘l'1)=AxpM(t)+BupM(t)+WPM(t)
Ypm () =Cxpp (t) +vpy (L)
* Model order: 4% order
° yPM(t)=PM Production -0694‘ —0263 —0250 —0061
. A= 0.404 0.615 0.714 0.043
0.057 0.145 0.130 0.720
Upp (£) PM Elect 10.030 —0.207 —0.291 0.300
s upy(t) = |udy(®)| = | PM Steam
3 Material Fl _
upm (t) ateriac Fow 0.006 0.010 —0.009
o by (t) = V2 ()+ V3,0 (t) +Uyrig(t) . p=| 0.004 —-0.021 0.063
pm(t) = Yeup )+ yeup (t) grid B 0,042 0029 —0.064
* By ()= acyp Yeup()* ag yp(t) |—0.016 —-0.008 —0.001
* acyp = 0.6346 e C=[1115 -12.76 —-39.78 —49.63]

. az = 3.1259
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Part ll: MPC problem formulation
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MPC formulation

Minimise energy costs

Tracking production
objective [y (£) ]

[ Cost functions J

N—1 A

——

\
min Z {Cgas(Olup(®) + utnp(t) + udpp (O] + Corece (O ugria () + ylla(®)I3}

t=0

Constraints

s. to

ye(t) = Ep ug(t) + vp(t)

Yeup(t) = Ecyp Ucup(t) + veup(t)

xpy (t + 1)=Axpy (t) +Bupy (t) + wpy(t)
Ypm (£) =Cxpp (t) + vpy(t)

Ucyp < Ucyp(t) < Uchps Yeur < Yeur(t) < Yenp|
up < up(t) < g, yp < yp(t) < s
_ﬁgrid < Ugrid (t) < agrid

—a(t) + yhu (1) < ypu(t) < a(t) + yhu(t)

Boiler model
CHP model

PM model

Bounds/Capacity limits

Tracking (o = slack variable)




Relative saving (%)
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3 hours prediction horizon - 5 minutes sampling interval

20 Relative energy cost saving with MPC

Substantial theoretical cost savings

56

Energy costs and tracking

Production for a one week period
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Conclusions
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Optimisation-based control approaches have the high potential to improve the energy
efficiency and minimise costs and emissions

MPC is likely to become a standard for energy & power applications
MPC is a promising methodology for energy management and decision-making in industries

v’ cost-effective, environmentally friendly and energy efficient production plans
v" robustness against several sources of uncertainty, including the communication delays
v non-standard objectives, such as grid service provision, can be included
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