

Data-driven optimisation framework for assessing energy and emission saving potentials in foundation industries

Michael Ajeni and Alessandra Parisio

Reader in Future Energy Networks Power and Energy Division Department of Electrical and Electronic Engineering University of Manchester

7F/Network+ Conference, Sheffield, 5th December 2023

- Project title: Data-driven optimisation framework for assessing energy and emission saving potentials in foundation industries
- Industry Project Partner: Palm Paper Limited
- Project duration: 6 months
- Aim: Quantifying the potentials for energy and emission savings optimising energy performance
- Objectives:
 - > 01: Data analysis and processing
 - > 02: Identification of benchmark representative production activities
 - > 03: Development of a data-driven modelling framework
 - > 04: Formulation of the optimisation problem

MANCHESTER 1824 The University of Manchester

- Industry energy consumption represents almost 40% of current global total final consumption and is still dominated by fossil fuels
- The IEA predicts that efficiency increases will prevent 1Gt of carbon emissions by 2030 alone
- Foundation industries provide a large potential to improve both energy use and production efficiency
- Concerns over climate change are likely to make inefficiency and high emissions increasingly serious business liabilities

Optimised and energy-efficient production can give energy savings from 10% to 50%

International energy Agency (IEA), World Energy Outlook 2021

J. Rissman, et al., Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070, Applied Energy, 2020

W. Cai et al., A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking, Renewable and Sustainable Energy Reviews, 2022

MANCHESTER Energy management in future industry

The University of Manchester

- Combining energy management with all-important production targets requires new research into systematic, decision-making frameworks
- This becomes more important as
 - ✓ factories install renewable generation
 - ✓ rewards for grid support are available

Intelligent industries

Challenges and contributions

- Unavailable, inaccurate model, high-order highly nonlinear dynamics
- Handling energy resources along with standard operational constraints and objectives
- Multiple non-production objectives:
 - ✓ Costs and emissions minimization
 - ✓ Energy efficiency improvement
 - ✓ Effective service provision

- Advanced optimisation framework as decision-support system
- Data-driven modelling

Model Predictive Control (MPC)

The University of Manchester

MPC uses a dynamical model of the process/system to predict its future evolution and choose the "best" control action

© 2018 A. Bemporad, Model Predictive Control

Why Model Predictive Control

- Systematic use of data, forecasts and measurements
- Based on the future behavior of the system
- Handling of constraints
- Use of a feedback mechanism
- Economic, social and environmental objectives
- Mature code and development tools
- Flexible and advanced control design

Part I: Data-driven modelling

Paper industry

- Paper production company producing newsprints and news paper grades from completely recycled materials
- Production relying on natural gas and electricity

The Paper Machine (PM) consumes between 80% to 90% of total steam and 58%-70% of electricity in the mill

Identification of sub-systems

The University of Manchester

Identification of sub-systems

The University of Manchester

Identification of sub-systems

The University of Manchester

(t/h)

- A yearlong data collected and sampled every minute
- Available data in their raw and unprocessed form
- Necessary to pre-process data, e.g., :
 - ✓ Resampling
 - ✓ Noise reduction
 - ✓ Elimination of outliers
 - ✓ Detrending to remove data offsets

Boiler model

- Type of model: *static (least square estimation)*
- Input (u_B) = gas supply from the boiler pressure reduction and metering station (BPRMS)
- Output (y_B) = steam flow at 3 barg (9 barg pressure output negligible and unavailable)

- Model: $y_B(t) = E_B u_B(t) + v_B(t)$
- **ON Mode:** $E_B = 75.47\% v_B(t) = 1.0698$
- Standby Mode: $E_B = 3.01\% v_B(t) = 5.03$

CHP model

- Type of model: *static (least square estimation)*
- Inputs (u_{CHP}): gas supply to gas turbine and supplementary firing gas supply
- Outputs (y_{CHP}): CHP steam, CHP Gas Turbine electrical power and CHP Steam Turbine electrical power

CHP model

The University of Manchester

• Model: $y_{CHP} = E_{CHP} u_{CHP} + v_{CHP}$

Paper Machine model

- Type of model: *dynamic state space (subspace identification)*
- Inputs (u_{PM}) : steam, electrical power and material flow
- Outputs (y_{PM}): paper machine production (t/h)

Validation: Fit % = 94.73%

• Model:

Paper Machine model

 $x_{PM}(t+1) = \mathbf{A} x_{PM}(t) + \mathbf{B} u_{PM}(t) + w_{PM}(t)$ $y_{PM}(t) = \mathbf{C} x_{PM}(t) + v_{PM}(t)$

Model order:

• $y_{PM}(t)$ = PM Production

• $\boldsymbol{u}_{PM}(t) = \begin{bmatrix} u_{PM}^{1}(t) \\ u_{PM}^{2}(t) \\ u_{PM}^{3}(t) \end{bmatrix} = \begin{bmatrix} PM \ Elect \\ PM \ Steam \\ Material \ Flow \end{bmatrix}$

4th order

- $u_{PM}^1(t) = y_{CHP}^2(t) + y_{CHP}^3(t) + u_{grid}(t)$
- $u_{PM}^2(t) = a_{CHP} y_{CHP}^1(t) + a_B y_B(t)$
- $a_{CHP} = 0.6346$
- $a_B = 3.1259$

$$\mathbf{A} = \begin{bmatrix} 0.694 & -0.263 & -0.250 & -0.061 \\ 0.404 & 0.615 & 0.714 & 0.043 \\ 0.057 & 0.145 & 0.130 & 0.720 \\ 0.030 & -0.207 & -0.291 & 0.300 \end{bmatrix}$$

•
$$\mathbf{B} = \begin{bmatrix} 0.006 & 0.010 & -0.009 \\ 0.004 & -0.021 & 0.063 \\ 0.042 & 0.029 & -0.064 \\ -0.016 & -0.008 & -0.001 \end{bmatrix}$$

• **C** = [111.5 -12.76 -39.78 -49.63]

Part II: MPC problem formulation

MPC formulation

The University of Manchester

1824

MANCHESTER

Cost functions

Tracking production

s. to

Constraints

 $y_B(t) = E_B u_B(t) + v_B(t)$ **Boiler model** $\boldsymbol{y}_{CHP}(t) = \boldsymbol{E}_{CHP} \boldsymbol{u}_{CHP}(t) + \boldsymbol{v}_{CHP}(t)$ CHP model $x_{PM}(t+1) = \mathbf{A} x_{PM}(t) + \mathbf{B} u_{PM}(t) + \mathbf{w}_{PM}(t)$ PM model $y_{PM}(t) = \mathbf{C} x_{PM}(t) + v_{PM}(t)$ $\underline{\boldsymbol{u}}_{CHP} \leq \boldsymbol{u}_{CHP}(t) \leq \overline{\boldsymbol{u}}_{CHP}, \ \underline{\boldsymbol{y}}_{CHP} \leq \boldsymbol{y}_{CHP}(t) \leq \overline{\boldsymbol{y}}_{CHP}$ **Bounds/Capacity limits** $\underline{u}_B \leq u_B(t) \leq \overline{u}_B, \underline{y}_B \leq y_B(t) \leq \overline{y}_B$ $\begin{aligned} &-\bar{u}_{grid} \leq u_{grid}(t) \leq \bar{u}_{grid} \\ &-\alpha(t) + y_{PM}^R(t) \leq y_{PM}(t) \leq \alpha(t) + y_{PM}^R(t) \end{aligned}$ **Tracking (** α = slack variable)

Energy costs and tracking

The University of Manchester

3 hours prediction horizon - 5 minutes sampling interval

Conclusions

- Optimisation-based control approaches have the high potential to improve the energy efficiency and minimise costs and emissions
- MPC is likely to become a standard for energy & power applications
- MPC is a promising methodology for energy management and decision-making in industries
 - ✓ cost-effective, environmentally friendly and energy efficient production plans
 - ✓ robustness against several sources of uncertainty, including the communication delays
 - ✓ non-standard objectives, such as grid service provision, can be included

Thank You!

Alessandra Parisio

Power and Energy Division

Department of Electrical and Electronic Engineering

University of Manchester

Email: alessandra.parisio@manchester.ac.uk